Replicator Dynamics for Multi-agent Learning: An Orthogonal Approach

نویسندگان

  • Michael Kaisers
  • Karl Tuyls
چکیده

Today’s society is largely connected and many real life applications lend themselves to be modeled as multi-agent systems. Although such systems as well as their models are desirable, e.g. for reasons of stability or parallelism, they are highly complex and therefore difficult to understand or predict. Multi-agent learning has been acknowledged to be indispensable to control or find solutions for such systems. Recently, evolutionary game theory has been linked to multi-agent reinforcement learning. However, gaining insight into the dynamics of games, especially if time dependent, remains a challenging problem. This article introduces a new perspective on the reinforcement learning process described by the replicator dynamics, providing a tool to design time dependent parameters of the game or the learning process. This perspective is orthogonal to the common view of policy trajectories driven by the replicator dynamics. Rather than letting the time dimension collapse, the set of initial policies is considered to be a particle cloud that approximates a distribution and we look at the evolution of this distribution over time. First, the methodology is described, then it is applied to an example game and viable extensions are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Switching dynamics of multi-agent learning

This paper presents the dynamics of multi-agent reinforcement learning in multiple state problems. We extend previous work that formally modelled the relation between reinforcement learning agents and replicator dynamics in stateless multi-agent games. More precisely, in this work we use a combination of replicator dynamics and switching dynamics to model multi-agent learning automata in multi-...

متن کامل

روش‌های مدل‌سازی تطوری در اقتصاد (با تاکید بر عناصر مشترک سازنده آنها)

In this paper we have tried mention to some sort of thewell-known evolutionary modeling approaches in economic territory such as Multi Agent simulations, Evolutionary Computation and Evolutionary Game Theory. As it has been mentioned in the paper, in recent years, the number of Evolutionary contributions applied to Multi-Agent models increased remarkably. However until now there is no consensus...

متن کامل

Learning in Networked Interactions: A Replicator Dynamics Approach

Many real-world scenarios can be modelled as multi-agent systems, where multiple autonomous decision makers interact in a single environment. The complex and dynamic nature of such interactions prevents hand-crafting solutions for all possible scenarios, hence learning is crucial. Studying the dynamics of multi-agent learning is imperative in selecting and tuning the right learning algorithm fo...

متن کامل

Evolutionary Dynamics of Q-Learning over the Sequence Form

Multi–agent learning is a challenging open task in artificial intelligence. It is known an interesting connection between multi–agent learning algorithms and evolutionary game theory, showing that the learning dynamics of some algorithms can be modeled as replicator dynamics with a mutation term. Inspired by the recent sequence–form replicator dynamics, we develop a new version of theQ–learning...

متن کامل

Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009